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We study small-scale two-dimensional non-local turbulence, where interaction of
small scales with large vortices dominates in the small-scale dynamics, by using a
semi-classical approach developed in Dyachenko, Nazarenko & Zakharov (1992),
Nazarenko, Zabusky & Scheidegger (1995), Dubrulle & Nazarenko (1997) and
Nazarenko, Kevlahan & Dubrulle (1999). Also, we consider a closely related problem
of passive scalars in Batchelor’s regime, when the Schmidt number is much greater
than unity. In our approach, we do not perform any statistical averaging, and most
of our results are valid for any form of the large-scale advection. A new invariant
is found in this paper for passive scalars when their initial spectrum is isotropic. It
is shown, analytically, numerically and using a dimensional argument, that there is a
spectrum corresponding to an inverse cascade of the new invariant, which scales like
k−1 for turbulent energy and k1 for passive scalars. For passive scalars, the k1-spectrum
was first found by Kraichnan (1974) in the special case of advection δ-correlated in
time, and until now it was believed to correspond to an absolute thermodynamic
equilibrium and not a cascade. We also obtain, both analytically and numerically,
power-law spectra of decaying two-dimensional turbulence, k−2, and passive scalar, k0.

1. Introduction
Formation of coherent large-scale vortices from turbulence is a common place in

two-dimensional numerical simulations of the Euler/Navier–Stokes equations (Smith
& Yakhot 1993; Borue 1993, 1994; McWilliams 1984; Benzi et al. 1986; Benzi, Pat-
nello & Santangelo 1987; Babiano et al. 1987; Santangelo, Benzi & Legras 1989;
McWilliams 1990; Brachet, Meneguzzi & Sulem 1986; Brachet et al. 1988 and Kevla-
han & Farge 1997), as well as in laboratory experiments (Couder 1984; Sommeria
1985; Cardoso, Marteau & Tabeling 1994, 1995). The intensity of the coherent vortices
grows via the inverse energy cascade and eventually they start producing a significant
feedback on turbulence. At this moment, the low-wavenumber spectrum changes from
its transient Kolmogorov shape, k−5/3 (for forced turbulence), to a steeper spectrum;
see Smith & Yakhot (1993), Borue (1994). There is no consensus in literature on how
the non-local interaction with large-scale vortices affects the small-scale spectrum in
both forced and decaying turbulence. Computations of McWilliams (1984) (decaying
turbulence, 1282 grid, hyperviscosity), Benzi et al. (1986, 1987) (decaying turbulence,
1282 to 5122 resolution, hyperviscosity), Babiano et al. (1987) (forced turbulence, 1282)
and Santangelo et al. (1989) (decaying turbulence 10242 with hyperviscosity) indicate
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steeper than k−3 spectra. McWilliams suggested that the coherent vortices suppress
the enstrophy cascade by the coherent vortices which explains steeper than k−3 spectra
in small scales (McWilliams 1984, 1990). On the other hand, numerical experiments of
Brachet et al. (1986) and Brachet et al. (1988) (decaying turbulence, resolution up to
20482), Borue (1994) (forced turbulence, resolution up to 10242) show the k−3 energy
spectrum of small-scale turbulence. The difference in the considered regimes and, per-
haps, differences in performance of the numerical methods may explain the discrep-
ancy. Ohkitani (1991) used the Weiss criterion (Weiss 1991) to decompose the vorticity
field into the coherent structures and ‘background’. He showed numerically that the
background field possesses the k−3 energy spectrum whereas the coherent structures
are characterized by a steeper spectrum. A similar conclusion was recently reached
by Kevlahan & Farge (1997) who used wavelets, and who showed that the coherent
structures, although very sparse, contain most of the turbulent energy. In spite of these
achievements in the numerical simulation of two-dimensional turbulence, the under-
lying physical mechanisms of the turbulence-vortex interactions still remain unclear.

To study the interaction of turbulence with coherent large-scale vortices we consider
an extreme case where these interactions are dominant in the turbulence evolution
and local interactions between the small scales may be neglected. This case will be
referred to as non-local turbulence. It is reasonable to think that two-dimensional
turbulence becomes non-local at late stages of its evolution when much of the energy
is condensed into the largest scale of the system. A simple estimate shows that the
spectrum must decay more steeply than k−3 at large scales for the non-local turbulence
to be stronger than the local in the small scales. High-resolution numerical simulations
of forced turbulence by Borue (1993) indicate that the enstrophy transfer is strongly
non-local. It is of course an open question whether or not the local interactions can
ever be negligible in a real experiment. However, the study of such a pure non-local
interaction is important as it is the opposite extreme to the classical Kolmogorov
picture, in which the non-local interactions are neglected with respect to the local
ones. The truth, then, should be expected in between these two extremes. Remarkably,
as we shall see in this paper, the non-local theory predicts the same k−3-spectrum as
the local theory does which makes this spectrum quite universal.

A formalism suitable for description of the non-local two-dimensional turbulence
was developed in Dubrulle & Nazarenko (1997). In that paper, the scale separation
between the small turbulence scale and the large vortex scale was used to average the
Euler equations over the small scales and derive a coupled system of equations for the
small-scale and large-scale components. Note that no averaging is made over the large
scales. For the small-scale component this approach leads to a semi-classical (WKB)
description, where the wavepackets of turbulence are advected by the mean flow, and
their wavenumber is evolving due to the local mean strain/shear produced by the
large vortices. The enstrophy of the turbulence wavepackets is conserved whereas the
energy is not: it can be transferred to (or be drawn from) the large-scale vortices.
In turn, turbulence produces a feedback on the large-scale flow via the averaged
Reynolds stress. The equations for the small and large scales form a complete system
of equations called the two-fluid model. The original idea of the two-fluid model was
proposed for β-plane turbulence in Dyachenko, Nazarenko & Zakharov (1992) and it
was later applied to modelling of sound–vortex nonlinear interactions in Nazarenko,
Zabusky & Scheidegger (1995), modelling of rapid distortion of three-dimensional
turbulence by inhomogeneous strain in Nazarenko, Kevlahan & Dubrulle (1999)
and for developing a new subgrid model for two-dimensional turbulence in Laval,
Dubrulle & Nazarenko (1999).
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In this paper we consider the small-scale turbulence to be initially isotropic and
homogeneous (for decaying turbulence) or to be generated by an isotropic and
homogeneous forcing (for forced turbulence). Applications where the scale separation
approach gives rigorous results exist but of course are very limited. For example, one
can think of a suddenly introduced forcing at a scale which is much less than the
integral scale. In this case, our approach will be rigorous until the spectral gap is
filled. However, we will go beyond such limited applications and will show that some
of the effects found under the scale separation assumption will survive when the gap
is filled (e.g. the k−3-spectrum) whereas the other results become harder to verify but
they allow the formulation of quite an important hypothesis about the long time
asymptotics in forced two-dimensional turbulence.

Generally, the small-scale turbulence feeds back onto the large scales affecting
their long-time evolution. Such a feedback was included in the model developed
in Dyachenko et al. (1992). Dubrulle & Nazarenko (1997), Nazarenko et al. (1995,
1999) and Laval (1999). It is interesting that the feedback term appears to be very
small when the initial small-scale turbulence (or the turbulence forcing) is statistically
isotropic; in fact it is identically equal to zero in our model as was shown in
Nazarenko et al. (1999). Thus, the large-scale vortex dynamics completely decouples
from the small-scale turbulence, and the mean velocity field can be considered as an
external field for the small-scale dynamics. This result, together with the fact that
the small-scale vorticity is advected unchanged by the mean velocity field, makes
the dynamics of initially isotropic turbulence identical to the passive-scalar advection
problem. Therefore, we shall consider the turbulence and the passive-scalar spectra
in parallel in this paper. The analogy between the small-scale vorticity and passive
scalars is not new, see e.g. Kraichnan (1975). Babiano et al. (1987) argued, however,
that because of the turbulence feedback on the coherent vortices the small-scale
turbulence dynamics is very different from the passive-scalar dynamics. Again, in our
case such a feedback is absent because of the non-locality and initial isotropy and
homogeneity of turbulence.

For passive scalars, the reason for the non-locality (scale separation) is completely
different from the case of turbulence. It arises, for example, if the Schmidt number
is much greater than unity, so that much smaller scales are present in the passive
scalar than in the advecting flow. The case of the small-scale passive scalar advected
by a large-scale flow was first studied by Batchelor (1959), and it is referred to as
Batchelor’s regime. The statistical behaviour of passive scalar in Batchelor’s regime
has been studied in great detail by Chertkov et al. (1995). In the present paper, we do
not perform any statistical averaging over large scales. This allows us to show that
some passive-scalar properties are general for any large-scale flow and independent
of its statistics and to show the sensitivity of some other properties to the particular
location in the large-scale flow.

An important result which we are going to use in this paper is that the energy of
initially isotropic turbulence is conserved; it is neither transferred to nor is it drawn
from the large-scale flow as in the general case of anisotropic initial turbulence, see
Nazarenko, et al. (1999). Consequently, there is a new spectrum associated with an
inverse spectral flux of energy, k−1. Together with the enstrophy-flux spectrum, the
energy-flux spectrum can be derived from a dimensional argument, as well as obtained
numerically and as an asymptotic analytical solution in the two-fluid model.

It is well known that the k−3 enstrophy-cascade spectrum has a k−1 analogue among
the passive-scalar spectra; see Kraichnan (1975). The k−1 passive-scalar spectrum was
first found by Batchelor (1959). Importantly, the new k−1 energy spectrum obtained



304 S. Nazarenko and J.-P. Laval

in this paper also has its analogue in the passive-scaler-dynamics k1-spectrum. The
k1-spectrum is a special case of the kD−1-spectrum (where D is the number of
dimensions) obtained by Kraichnan (1974) for the passive scalar in Batchelor’s regime
with a velocity field δ-correlated in time. Kraichnan noticed that the kD−1-spectrum
corresponds to equipartition of the passive scalar among all degrees of freedom and
concluded that this spectrum corresponds to a state of absolute statistical equilibrium.
In this paper we show that although the passive scalar is indeed uniformly distributed
among wavenumbers for the k1-spectrum, this spectrum corresponds to the cascade
of another passive-scalar invariant, and, therefore, describes a state which is very far
from the statistical equilibrium. Moreover, we show that Batchelor’s k−1 passive scalar
cascade spectrum corresponds to a wavenumber equipartition of the new invariant,
which means that the situation is completely symmetric and both k1- and k−1-spectra
belong to the same class. The new invariant is found in this paper and called pseudo-
energy because in the two-dimensional case it is analogous to the energy of turbulence.
The pseudo-energy cascade is inverse, and the corresponding kD−1-spectrum is formed
on the low-wavenumber side of the forcing scale, as verified numerically in this paper.

We also consider the case of freely decaying turbulence, for which we obtain,
both analytically and numerically, a k−2-spectrum. Correspondingly, for free decay of
passive scalar we obtain a k0-spectrum.

This paper is organized as follows. We derive the equations describing the evolution
of the small-scale turbulence and describe the numerical method used to compute
these equations in § 2. Section 3 is devoted to finding the turbulence spectra and their
asymptotic behaviour for decaying turbulence. A similar study for forced turbulence
is presented in § 4. We show how to use the dimensional analysis to obtain the spectral
exponents for the non-local turbulence in § 5. In § 6 we re-interpret our results for the
passive scalar advection problem. We also consider the passive scalar problem for an
arbitrary number of dimensions in this section and we find a new invariant for the
passive scalars. We summarize our results in § 7.

2. Dynamics of non-local turbulence
2.1. Derivation of the basic equations

Let us write the two-dimensional Navier–Stokes equations formulated in terms of
vorticity ω as

ωt + u · ∇ω = ν∇2ω, (2.1)

where u is the velocity. Consider the turbulent vorticity at small scales l and suppose
that the turbulence is non-local, that is that only non-local interactions with large
scales L, such that

ε = l/L� 1, (2.2)

are important for the turbulence dynamics at scale l. There are several equivalent
ways that lead to the semi-classical description of the small-scale turbulent dynamics
in this case, for example using the Wigner function (Dyachenko et al. 1992; Dubrulle
& Nazarenko 1997), the partial Fourier transform (Nazarenko et al. 1995) or the
Gabor transform (Nazarenko et al. 1999). Here we shall use the Gabor transform of
vorticity ω defined as

ω̂(x, k, t) =

∫
f(ε∗|x− x0|)eik·(x−x0)ω(x0, t) dx0, (2.3)
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where k ∼ 2π/l, 1� ε∗ � ε and f(x) is a function rapidly decreasing at infinity, for

example e−x2

.
Define the averaging as

u(x, t) =

∫
f2(ε∗|x− x0|)u(x0, t) dx0, (2.4)

where f is the same function as in the Gabor transform (2.3), and, therefore, the
averaging is over a length which is intermediate between the small scale l and the
large scale L. The non-locality of turbulence means that the dominant contribution
to the advecting velocity field comes from the large scales,

|u− u| � |u|. (2.5)

Note that this condition does not require that the small-scale vorticity be small
compared to the large-scale vorticity. Inequalities (2.2) and (2.5) make a complete set
of applicability conditions for our theory.

Let us apply the Gabor transform to the vorticity equation (2.1) and use condition
(2.5),

∂tω̂ +

∫
f(ε∗|x− x0|)eik·(x−x0)∇0 · (u(X0)ω(x0)) dx0 = −νk2ω̂, (2.6)

where ∇0 denotes the gradient with respect to x0. Because of the decreasing kernel f,
the main contribution into the integral here comes from |x − x0| ∼ 1/ε∗. Therefore,
one can Taylor expand function u which varies significantly only at the large scale
1/ε� 1/ε∗. Neglecting the quadratic terms in this Taylor expansion, which are small
as (ε/ε∗)2, we have

∂tω̂ +

∫
f(ε∗|x− x0|)eik·(x−x0)∇0 · (u(x)ω(x0)) dx0

+

∫
f(ε∗|x− x0|)eik·(x−x0)∇0 · [((x0 − x) · ∇)u(x)]ω(x0) dx0 = −νk2ω̂. (2.7)

Integrating by parts and changing ∇0 → −∇ in the first integral in (2.7), we see that
this integral is equal to (u ·∇)ω̂. Integrating by parts the second integral and changing
(x0 − x)→ i∂k and ∇0 → ik, we have for the second term −(∇(u · k)) · ∂kω̂. Thus, one
can write the equation for η̂ as follows:

Dtω̂ = −νk2ω̂, (2.8)

where

Dt = ∂t + ẋ · ∇+ k̇ · ∂k,
ẋ = = u, (2.9)

k̇ = −∇(k · u). (2.10)

Equations (2.9) and (2.10) are called the ray equations. Let us introduce the Jacobi
matrix Λ such that

Λij = ∂xj ai, i, j = 1, 2, (2.11)

where a(x, t) = (a1, a2) is the initial coordinate; it is an inverse function to the solution
of (2.9). In terms of Λ the solution of (2.10) is (Nazarenko et al. 1999)

k = ∇(q · a) = ΛTq, (2.12)

where ΛT is transposed Λ and q is the initial wavenumber.
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Because of the fluid incompressibility, dx = da, we have

detΛ = 0. (2.13)

From this condition and (2.12) it follows that the motion is also incompressible in
the wavenumber space,

dk = dq. (2.14)

Below we shall be interested in finding the turbulence spectra in the inertial range
where the viscosity is negligible. Neglecting the viscosity term in (2.8) we can find the
solution to the equation

ω̂(x, k, t) = ω̂(a, q, 0). (2.15)

2.2. Conservation laws

Note that N =
∫ |ω̂|2 dk is the x-density of the small-scale enstrophy. It follows from

(2.15) and (2.14) that the enstrophy density is conserved on the mean-flow trajectory

Nt + u · ∇N = 0. (2.16)

One can show (Nazarenko et al. 1999) that for initially isotropic turbulence the energy
density

E(x, t) =

∫ |ω̂(x, k, t)|2
k2

dk, (2.17)

is also conserved on the mean-flow trajectory in the inviscid range,

Et + u · ∇E = 0. (2.18)

Both the energy and enstrophy conservation laws play an important role in the
dynamics of the turbulence. Below, we shall be interested in the energy spectrum of
the turbulence defined as

E(x, k, t) =

∫ |ω̂(x, k, t)|2
k

dθ, (2.19)

where θ is the polar angle in the wavenumber space.

2.3. Numerical method

All analytical results obtained in this paper are verified and illustrated throughout
using numerical simulations. Our numerical method to compute non-local turbulence
is based on equation (2.15) according to which ω̂ is conserved along the trajectories
in (k, x)-space given by the solutions of (2.9) and (2.10). Therefore, we represent the
initial enstrophy field ω̂(k, x, 0) by a large ensemble of M particles each carrying
a small enstrophy σ and having initial coordinates and wavenumbers aj and qj
respectively,

|ω̂(x, k, 0)|2 =

M∑
j=1

σ δ(k − qj) δ(x− aj). (2.20)

Then for t > 0 the wavenumber-coordinate enstrophy distribution will be given by

|ω̂(x, k, t)|2 =

M∑
j=1

σ δ(k − kj(t)) δ(x− xj(t)), (2.21)

where xj(t) and kj(t) have to be found by solving the equation for particle trajectories
(2.9) and (2.10) with initial conditions xj(0) = aj and kj(0) = qj . To find the spectra
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one has to integrate this distribution over the coordinate volume, which is equivalent
to the summation over the particles in our case.

This method is similar to the particle-in-cell (PIC) method to compute the Vlasov
equation in plasma physics. The first discussion of using PIC to compute small-
scale turbulence was given in Dyachenko et al. (1992) in the context of β-plane
dynamics. The large-scale flow was computed by a standard pseudo-spectral method
with hyperviscosity. We used the large-scale fields generated at resolutions 1282 and
2562 and different kinds of hyperviscosities to ensure that the resolution is sufficient
for our results to be robust and insensitive to the specific choice of these numerical
parameters. A more detailed description of our numerical method can be found in
Laval et al. (1999).

3. Freely decaying turbulence
Let us consider first the simplest case where the initial spectrum is concentrated on

a circle in k-space and homogeneous in x-space,

|ω̂(x, k, 0)|2 =
N

2πq0

δ(k − q0), (3.1)

where q0 is a number. We will also assume that initially the small-scale spectrum
is separated from the large-scale turbulence by a gap in k-space, and we will study
the evolution of the small-scale component for the times until this spectral gap is
filled by intermediate scales. Because the equations for the small-scale turbulence are
linear, the generalization to the any isotropic initial spectrum is obtained by simply
integrating over the rings of type (3.1). From (2.15),

|ω̂(x, k, t)|2 = |ω̂(a, q, 0)|2 =
N

2πq0

δ(q − q0), (3.2)

where a = a(x, t) and q = q(x, k, t) are the initial position and initial wavenumber
correspondingly. Substituting this expression into (2.19) we have

E(x, k, t) =
N

2πq0k

∫ 2π

0

δ(q − q0) dθ =
N

2πq0k|∂θq| =
N

πk|∂θq2| . (3.3)

Here, q2 must be expressed in terms of k and θ, and θ must be eliminated using the
condition q = q0. From (2.12) and detΛ = 0 we have an expression for q in terms
of k,

qx = −Λ12kx + Λ11ky, qy = Λ22kx − Λ21ky. (3.4)

Thus

q2 = q2
x + q2

y = (−Λ12k cos θ + Λ11k sin θ)2 + (Λ22k cos θ − Λ21k sin θ)2

= k2(c+ c1 cos 2θ − c2 sin 2θ) = k2(c+ c3 sin(γ − 2θ)), (3.5)

where

c1 = (Λ2
22 + Λ2

12 − Λ2
11 − Λ2

21)/2, (3.6)

c2 = Λ11Λ12 + Λ21Λ22, (3.7)

c = (Λ2
22 + Λ2

12 + Λ2
11 + Λ2

21)/2, (3.8)

c3 =

√
c2

1 + c2
2, (3.9)
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γ = arctan (c1/c2). (3.10)

From q2 = q2
0 we find

sin (γ − 2θ) =
q2

0

c3k2
− c/c3. (3.11)

Further,

|∂θq2| = 2c3k
2| cos (γ − 2θ)| = 2c3k

2
√

1− sin2 (γ − 2θ) = 2k2
√
c2

3 − (q2
0/k

2 − c)2.
(3.12)

Using the definitions of c1, c2, c3 and c and the condition detΛ = Λ11Λ22−Λ21Λ12 = 1
one can verify by a lengthy but simple calculation that c2

3 − c2 = −1, and therefore

|∂θq2| = 2k2
√

2cq2
0/k

2 − q4
0/k

4 − 1. (3.13)

Substituting this expression into (3.3) we finally have

E(x, k, t) =
N

2πk3
√

2cq2
0/k

2 − q4
0/k

4 − 1
. (3.14)

It is easy to check that ∫
E(x, k, t) dk =

N

q2
0

= const,

which is a manifestation of the more general result that for any isotropic spectrum
the energy is constant on the fluid trajectory (Nazarenko et al. 1999).

3.1. Large-time asymptotics of E(x, k, t)

First, the spectrum E(x, k, t) is finite only in a limited range of wavenumbers, kmin <
k < kmax, where kmin and kmax are to be found from the condition that the quadratic
expression under the square root in (3.14) is equal to zero,

k2
min = q2

0(c−√c2 − 1), (3.15)

k2
max = q2

0(c+
√
c2 − 1). (3.16)

Note that c = 1 and kmin = kmax = q0 at t = 0. Second, the spectrum is infinite at
k = kmin and k = kmax. These two observations are natural if we keep in mind that the
initial circle distribution in k-space becomes an ellipse, see (3.11). One can see from
(3.15) and (3.16) that the ellipse area is constant,

S = πkminkmax = πq2
0 . (3.17)

This gives a useful relation between kmin and kmax,

kmin/q0 = q0/kmax. (3.18)

The aspect ratio of the ellipse is

λ = kmax/kmin = k2
max/q

2
0 = c+

√
c2 − 1. (3.19)

Expressing c in terms of λ gives

2c = λ+ 1/λ. (3.20)

The value of kmax, and therefore λ, increases with time because of the large-scale
distortion (shearing/straining). We shall consider in more detail in the Appendix how
fast this growth is. (Of course, all the results about the aspect ratio growth discussed
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Figure 1. Energy spectrum of decaying turbulence: (a) with initial spectrum concentrated at
k = q0 = 100 for three different moments of time; and (b) with a broad initial spectrum (the initial
spectrum is shaded).

here and in the Appendix are valid only if the advection of the small scales is passive,
as is assumed throughout this paper). In turbulent flow, the growth of λ is directly
related to Lyapunov exponents (Chertkov et al. 1995). When λ� 1, we have λ ≈ 2c.
In this case, we have for kmin � k � kmax,

E(x, k, t) =
N

2π
√

2cq0

k−2. (3.21)

Note that λ ≈ 2c � 1 corresponds to the large time ωt � 1 and that kmin = q0

√
2c

and kmax = q0/
√

2c. Summarizing, we have for the large-time asymptotics, λ ≈ 2c� 1,

in the range q0

√
2c� k � q0/

√
2c,

E(x, k, t) =
N

2πkmax
k−2, (3.22)

where c is given by (3.8). Because c in general depends on the coordinate, so do
kmin, kmax and E. Integration of E over the coordinate will give an average over the
large-scales energy spectrum, which is, of course, also scales as k−2.

In figure 1(a) we show the energy spectrum evolution obtained by numerical
integration of (2.15) with initial conditions (3.1) and random initial conditions for
the large-scale flow. We see that the spectrum is indeed approaching k−2 shape in a
growing range centred at q0.

3.2. The case of a finite-width initial spectrum

As we have already mentioned, the generalization to any isotropic initial spectrum
|ω̂0(q0)|2 (and/or arbitrary isotropic pumping) is obtained by simply integrating Ek
over q0. For example, in the decaying case

Ek =

∫ |ω̂0(q0)|2
2πk3

√
2cq2

0/k
2 − q4

0/k
4 − 1

dq0. (3.23)
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It is easy to see that if the width of |ω̂0(q0)| is of order of q0 then the result for the
k−2 energy spectrum scaling remains valid. Instead of (3.22) we have

E(x, k, t) = C k−2, (3.24)

where

C =
1

2π
√

2c

∫ |ω̂0(q0)|2
q0

dq0. (3.25)

Numerical simulation of (2.15) with a finite-width initial spectrum confirms that the
energy spectrum behaves as k−2 for large time, as shown in figure 1(b).

4. Forced turbulence
Suppose first that the enstrophy is injected at q = q0 at the rate σ per unit

time. Because the problem is linear, the total spectrum is equal to the sum of the
contributions produced by σ dt′ injected at different moments t− t′,

E(x, k) =
σ

2πk3

∫ ∞
tc

dt′√
2c(t′)q2

0/k
2 − q4

0/k
4 − 1

. (4.1)

Here tc is the minimal time required for the ellipse to reach k. Depending on whether
k < q0 or k > q0, at t = tc we have k = kmin or k = kmax correspondingly. In both
cases the denominator in (4.1) becomes zero, which gives a condition for finding tc,

c(tc) = 1
2
(q2

0/k
2 + k2/q2

0). (4.2)

4.1. Turbulence strained between vortices

Uniform straining results in an exponential growth of the ellipse aspect ratios, λ =
exp(2αt), where α is the strain rate, see the Appendix. Then, the integral in (4.1)
converges and the stationary spectrum is possible. Let us find the stationary spectrum
for the scales far from the pumping scale, k � q0 and k � q0.

4.1.1. Pure energy flux case, k � q0

If k � q0, the main contribution to the integral (4.1) comes from t′ such that
2c ∼ q0/k � 1. Then 2c = λ = exp (2αt)� 1 and c (= 1

2
π), and (4.1) becomes

E(x, k) =
σ

k2q0

∫ ∞
tc

dt′√
exp (2αt′)− q2

0/k
2

=
σ

αkq2
0

∫ 1

0

dz√
1− z2

=
σ

αkq2
0

arcsin x|10 =
πσ

2αq2
0

k−1, (4.3)

where z = q0e
−αt/k. Thus, the energy spectrum at k � q0 has the following power-law

scaling:

E ∝ k−1. (4.4)

As we discussed before, in the freely decaying case most of the initial energy is
transferred to k � q0 when λ� 1 and most of the enstrophy (number of particles) to
the k � q0 range. Therefore, spectrum (4.4) corresponds to the pure energy flux. As
we show in the next section, this spectrum can be derived from dimensional analysis
and is, therefore, more general than just a solution in a special case of uniform strain.
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4.1.2. Pure enstrophy flux case, k � q0

If k � q0, the main contribution to the integral (4.1) also comes from the 2c ∼
q0/k � 1 range. In this case, (4.1) can be rewritten as

E(x, k) =
σ

k3

∫ ∞
tc

dt′√
exp (2αt′)q2

0/k
2 − 1

=
σ

αk3

∫ 1

0

dz√
1− z2

=
σ

αk3
arcsin x|10 =

πσ

2α
k−3, (4.5)

where z = ke−αt/q0. Thus, we have the following scaling for the spectrum in the
k � q0 range which corresponds to a pure enstrophy flux:

E ∝ k−3. (4.6)

This spectrum will also be found using a dimensional argument in the next section.

4.2. Turbulence when there is vortex-core shear

As shown in the Appendix, vortex-core shearing results in an algebraic growth of
the ellipse aspect ratios, asymptotically λ = (βt)2, where β is the shear. Substituting
c = λ/2 (for large λ), we have

E(x, k, t) =
σ

k3

∫ ∞
tc

dt′√
(βt′)2q2

0/k
2 − q4

0/k
4 − 1

. (4.7)

One can see that this integral diverges at −∞. Therefore, no stationary spectrum
is possible for the small-scale turbulence inside the vortex cores in our model. The
physical explanation of this effect is that the line elements are stretched only linearly
in time which is much slower than an exponential stretching by strain. As a result,
the spectral flux induced by shearing inside the vortex core is insufficient to take
turbulence away from the forcing scale fast enough for a stationary state to exist. The
nonlinear interaction of small scales among themselves (ignored in this paper) acts to
accelerate the spectral transfer necessary for a stationary state, but the tendency of
deceleration of the spectral fluxes inside vortex cores persists. McWilliams suggested
that the suppression of the enstrophy flux inside the coherent vortices is the reason
for the spectra steeper than k−3 observed numerically (McWilliams 1984, 1990). The
results of this section show that this is indeed the case for the non-local turbulence
in a vortex core. On the other hand, the k−3-spectrum is expected when turbulence
is not trapped in vortex cores so that the spectral fluxes can quickly be developed
when the turbulence gets between vortices. We will discuss our numerical results for
the case of forced turbulence in § 4.4.

4.3. The case of a broad-band forcing

Suppose now that turbulence is forced over a range of wavenumbers which is of the
same order as the wavenumber itself and that the vorticity generated per unit time
in the interval dq0 is ζ(q0) dq0. Then instead of (4.1) we have

E(x, k) =
1

2πk3

∫
ζ(q0) dq0

∫ ∞
tc

dt′√
2c(t′)q2

0/k
2 − q4

0/k
4 − 1

. (4.8)

For k � q0 (where q0 is the characteristic forcing wavenumber), we have instead of
(4.3)

E(x, k) =
π

2α

(∫
ζ dq0

q2
0

)
k−1. (4.9)
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Figure 2. Energy spectrum of small-scale turbulence: (a) forced at a single wavenumber,
and (b) forced in a finite wavenumber range (the forcing shape is shaded).

For k � q0, expression (4.5) will be replaced with

E(x, k) =
π

2α

(∫
ζ dq0

)
k−3. (4.10)

4.4. Numerical results for forced turbulence

In the case of forced turbulence the numerical computations serve a greater pur-
pose than just illustrating the analytical results. Indeed, the theory predicts different
behaviour (1) for forced turbulence in vortex cores and (2) for turbulence between vor-
tices. Thus, it is not clear a priori what type of behaviour is dominating in the general
case, in particular when the large scales are initially random. In figures 2(a) and 2(b),
we show the numerical results for the energy spectrum of small-scale turbulence with
a narrow- and a broad-band forcing respectively. In both cases, the large-scale flow
was random initially. Stationary k−1- and k−3-spectra are clearly seen at large time.
This means that turbulence straining between vortices is the main dynamical process
dominating the turbulence evolution. Using a pictorial interpretation of Chertkov et
al. (1995), one could say that the ‘sea of strain’ dominates the ‘islands of vorticity’. On
the other hand, we do observe a spectrum steeper than k−3 for small turbulent regions
inside intense vortices. In figure 3 we show a typical large-scale vorticity distribution
and an intense vortex marked by the dashed line which is a vorticity contour at
ten times the average vorticity value. The energy spectrum of small-scale turbulence
measured in such a vortex is shown in figure 4. One can see that this spectrum is
closer to k−4 than to k−3.

5. Dimensional analysis for the non-local energy and enstrophy cascades
In the non-local case, the interaction among the small scales is negligible compared

with interaction via large scales. Corresponding equations for the small-scale turbulent
spectrum are linear with a characteristic time determined by the large-scale strain
and/or shear. Further, these equations have the form of a conservation law for the
small-scale enstrophy (number of particles) and, therefore, there is no enstrophy
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Figure 4. Energy spectrum of small-scale turbulence inside and outside of the intense vortices.

transfer between the small and large scales. A more subtle fact is that the small-scale
energy is also conserved if the initial small-scale spectrum is isotropic (Nazarenko et
al. 1999). The enstrophy transfer between the small scales is much more local in non-
local turbulence than in local turbulence. This, at first sight paradoxical, statement
is valid because any interacting wavenumber triad contains one small wavenumber
(large scale) and two large wavenumbers with very close values (small scales), and the
enstrophy is transferred only between these large wavenumbers. Recall that in local
turbulence all wavenumbers are similar in the interacting triad, and the enstrophy
transfer takes place between similar but not nearly equal wavenumbers. On the other
hand, the energy transfer is less local (it is as local as, perhaps, in local turbulence)
because for each individual triad the small-scale energy is not conserved (only the
total energy of all triads is conserved for isotropic initial spectra).
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In stationary turbulence the enstrophy and energy fluxes are constant. As in local
turbulence, the enstrophy cascade is directed toward large k and the energy cascade
is inverse, i.e. toward smaller k with respect to the pumping scale q0. Indeed, if a
finite enstrophy dissipation at k � q0 were to imply an infinite energy dissipation
at these scales, and, in turn, a finite energy dissipation at k � q0 would mean an
infinite enstrophy dissipation there. This standard reasoning to find the directions of
the enstrophy and energy fluxes is independent of the locality (or non-locality) as-
sumption. However, Kraichnan’s (1967) dimensional derivation of the energy spectra,
corresponding to the enstrophy and energy cascades, does rely on locality. Below we
shall see the consequences of this fact for the energy spectrum exponents.

Consider first k � q0 where the enstrophy flux η is negligible and the shape of the
energy spectrum is determined by the energy flux ε. The energy flux ε has dimension
l2/t3 and the large-scale flow is characterized by the rate of strain α that has the
dimension 1/t. Because the equations are linear, the energy spectrum must be linear
in ε. The only combination of ε, α and k ∼ 1/l that has the dimension l3/t2 of the
energy spectrum and is linear in ε is

Ek ∝ ε

α
k−1. (5.1)

Thus, we see that the energy cascade is characterized by a −1 spectral exponent
in non-local turbulence, which is different from the famous −5/3 valid for local
turbulence. This spectrum coincides with the exact analytical solution obtained above
for k � q0 for the special case of uniform large-scale strain.

Now let us consider k � q0 where the energy spectrum is determined by the
enstrophy flux η having dimension 1/t3. The only combination of η, α and k ∼ 1/l
that has the dimension of the energy spectrum and is linear in η is

Ek ∝ η

α
k−3. (5.2)

This spectrum coincides with the exact analytical solution obtained above for k � q0

for the special case of uniform large-scale strain.
As we see, the spectral exponent −3 is the same for local and non-local turbulence.

This arises because the dimension of the enstrophy flux does not involve l, and the
way we match the temporal part in the dimension of Ek (η2/3 for local turbulence or
η/α for non-local turbulence) does not change the spatial scale dependence k−3.

Note that the dimensional argument presented in this section does not rely on the
two-dimensionality of the system and it is valid also for three-dimensional turbulence
if the latter is non-local. Nonlocality does not arise naturally in three-dimensions
because there is no inverse cascade and energy condensation in large scales in this
case. However, non-locality can be induced externally by a mean shear, e.g. in a
turbulent channel flow.

6. Passive scalar spectra
As we have mentioned in the Introduction, the dynamics of vorticity in non-local

two-dimensional turbulence is identical to the dynamics of a small-scale passive-scalar
concentration field n(x, t) advected by a large-scale velocity field u. In this section, we
apply the results obtained above for two-dimensional turbulence to the passive-scalar
advection problem. We consider Batchelor’s regime for the passive-scalar when its
scale is much smaller than that of the advecting velocity field. The passive scalar
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spectrum is defined as

P (x, k, t) = 2π

∫
|n̂(x, k, t)|2 k dθ, (6.1)

where θ is the polar angle in the wavenumber space and n̂ is the Gabor transform
of n,

n̂(x, k, t) =

∫
f(ε∗|x− x0|)eik·(x−x0)n(x0, t) dx0 (6.2)

(see (2.3) for notation). The scalar variance is equal to
∫
P dk dx if f satisfies nor-

malization condition
∫
f2(ε∗|x− x0|) dx0 = 1. (Note an analogy with the definition of

the passive scalar spectrum in terms of the Fourier transforms in such a way that its
integral over k is equal to the variance.)

6.1. Pseudo-energy

One obvious conservation law for the passive scalar, which is analogous to the
enstrophy conservation in two-dimensional turbulence, is

Πt + u · ∇Π = 0, (6.3)

where

Π(x, t) =

∫
P dk. (6.4)

Remarkably there is also an analogue of the energy conservation in the case when
the passive scalar spectrum is initially isotropic,

It + u · ∇I = 0, (6.5)

where

I(x, t) =

∫ |n̂(x, k, t)|2
k2

dk. (6.6)

Indeed, by substituting

n̂(x, k, t) = n̂(a, q, 0) (6.7)

and (2.12) in (6.6), changing the variable of integration to q and taking into account
that detΛ = 1, we obtain that I depends on x and t only via a(x, t). But this means
that I satisfies equation (6.5). Keeping in mind the turbulence analogy, we will call
invariant I the pseudo-energy.

It is easy to generalize this result to an arbitrary number of dimensions D, in which
case the invariant of pseudo-energy is

I(x, t) =

∫ |n̂(x, k, t)|2
kD

dk. (6.8)

To prove this let us assume that the initial passive scalar spectrum is isotropic,

I(x, t) = |n̂(x, k, t)|2 = |n̂(a, q, 0)|2 = f(a, q), (6.9)

where q = |q| and f(a, q) is an arbitrary function which is zero at q = 0 and q → ∞.
Denoting A = (ΛT )−1 we have

(∂tI)a=const = (∂t)a=const

∫ |f(a, |Ak|)|2
kD

dk

=

∫
(Ȧξ, Aξ)

(Aξ, Aξ)
k
∂k|f(a, |Ak|)|2

kD
kD−1 dk ds(ξ) = 0. (6.10)
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Here we used the chain rule when differentiating f and we used the spherical variables
k = |k| and ξ = k/k with ds(ξ) being the infinitesimal surface element on the unit
sphere k = 1. As we see, in a, t variables I is independent of time which means that
it is a Lagrangian invariant.

Note that the pseudo-energy is conserved only when the passive scalar scale is
much less than the scale of the advecting field. Therefore, the pseudo-energy is an
adiabatic invariant rather than an exact one.

6.2. Free decay in two dimensions

To obtain the passive scalar spectra one can just divide the energy spectra obtained
for two-dimensional turbulence by k2. For a freely decaying (i.e. unforced) passive
scalar spectrum then it follows from (3.23) that

Pk =

∫ |n̂0(q0)|2
2πk

√
2cq2

0/k
2 − q4

0/k
4 − 1

dq0, (6.11)

where n̂0 is the initial spectrum. In the case c ∼ u t/L� 1 we have for kmin � k � kmax,

P (x, k, t) = C k0, (6.12)

where

C =
1

2π
√

2c

∫ |n̂0(q0)|2
q0

dq0. (6.13)

A numerically obtained spectrum of freely decaying passive scalar is shown in
figure 5. As predicted, the spectrum tends to a constant in an expanding range of
wavenumbers centred at the initial scale.

6.3. Forced two-dimensional passive scalar

Suppose that a passive scalar is forced so that the passive scalar generated per unit
time in the interval dq0 is ξ(q0) dq0. It follows from the analysis of two-dimensional
turbulence that no stationary passive scalar spectrum is possible inside the vortex
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cores of the advecting velocity field, whereas between the vortices we have from (4.8)

P (x, k) =
1

2πk

∫
ξ(q0) dq0

∫ ∞
tc

dt′√
2c(t′)q2

0/k
2 − q4

0/k
4 − 1

. (6.14)

Consider the uniform strain flow, u = (αx,−αy). For k � q0 (where q0 is the
characteristic forcing wavenumber), we obtain the famous Batchelor’s k−1-spectrum,

P (x, k) =
π

2α

(∫
ξ dq0

)
k−1. (6.15)

This spectrum corresponds to the constant spectral flux of the passive scalar toward
high wavenumbers.

For k � q0 we have

P (x, k) =
π

2α

(∫
ξ dq0

q2
0

)
k1. (6.16)

This spectrum corresponds to the constant spectral flux of the pseudo-energy I . It
will be considered in greater detail in the next section.

In figure 6, we show the spectrum of the forced passive scalar advected by a
random-field large-scale flow. One can see that Batchelor’s k−1-spectrum is formed
on the high-wavenumber side of the forcing scale, whereas the k1-spectrum is seen on
the low-k side of the forcing.

6.4. Pseudo-energy cascade in a higher number of dimensions

The k1-spectrum is, in fact, a D = 2 version of the kD−1-spectrum obtained by Kraich-
nan (1974). Because the pseudo-energy invariant was not known, the importance of
this spectrum as a cascade-type spectrum was not understood, and it was misinter-
preted as corresponding to an absolute statistical equilibrium state. Let us consider
the equation for the passive scalar spectrum derived by Kraichnan for the case of a
velocity field, δ-correlated in time and write a zero-diffusion limit of this equation,

∂tF = C[k∂kk − (D − 1)∂k](kF), (6.17)
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where F is the passive scalar spectrum averaged over the large scales and C is a
coefficient determined by the mean advection. Equation (6.17) can be also rewritten as

∂tF = ∂k(Ck
D+1∂k(k

1−DF)), (6.18)

which is a continuity equation expressing conservation of the passive scalar. The
power-law solution that corresponds to the constant passive scalar flux is, as is
well-known, F ∝ k−1.

On the other hand, one can re-write (6.17) in the form of yet another conservation
law via multiplying it by k−D ,

∂t(F/k
D) = ∂k[Ck

1−D∂k(kF)]. (6.19)

Thus, ∫ ∞
0

F

kD
dk = const, (6.20)

which expresses the pseudo-energy conservation in the D-dimensional case. It is a
special case of the conservation law (6.10) which was obtained without the assumption
that the velocity field is δ-correlated in time. According to (6.19), the flux of the
pseudo-energy (6.20) is Ck1−D∂k(kF), and the constant-flux solution satisfies

Ck1−D∂k(kF) = const,

which gives

F ∝ kD−1.

This spectrum corresponds to an equipartition of the passive scalar in the phase
space. However, it corresponds to a state which is very far from an absolute statistical
equilibrium, because there is an inverse cascade of the pseudo-energy associated
with this solution. Moreover, it is easy to see that the pseudo-energy invariant is
equipartitioned in k-space on the k−1-spectrum. Therefore, the situation is completely
symmetric for the kD−1- and k−1-spectra in that both of them correspond to a constant
cascade of one invariant and, simultaneously, to an equipartition of another integral
of motion.

7. Conclusion
A semi-classical description based on using the Gabor transform proved to be an

efficient tool for studying non-local two-dimensional turbulence and passive scalar
turbulence in Batchelor’s regime. It allows variations in the small-scale dynamics
depending on the local large-scale flow to be described. For example, it allowed the fact
that the turbulence spectra are steeper inside the vortex cores than between vortices
to be established. This is supported by two analytical solutions obtained for the cases
of a pure stationary strain and a stationary round vortex and it is also confirmed by
numerical simulations. Note that numerical simulations serve a more important role
in this case than just an illustration of the analytical results because in turbulence
the shear and strain are not stationary and the vorticity (or scalar) elements may
not have enough time to align. Numerical simulation of the semi-classical equations
by the PIC method allows one to work with very large inertial intervals, typically
eight decades wide. Cascade-type spectra and spectra of decaying turbulence can be
obtained within the semi-classical description analytically for a general form of the
large-scale flow without using averaging over large scales. It is natural to think that
two-dimensional turbulence becomes non-local for large time because of the energy
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Figure 7. Expected spectrum of forced turbulence for large time in the case when the forcing scale
and the largest scale of the system are well separated.

condensation at the largest scale. If this is true, then for very large time one should
expect the spectrum of forced turbulence to be as shown in figure 7.

Note that the k−1-spectrum will be observed only if the forcing scale is much less
than the largest scale of the system. When approaching the largest scale, the non-local
inverse energy flux ‘slows down’ and changes spectral slope from −1 to a sharper one
corresponding to the energy condensate. It is important to understand that the k−1-
spectrum will only be observed for non-local turbulence whereas the k−3 enstrophy
cascade is not sensitive to the non-locality property as it is the same for both local and
non-local turbulence. Thus, the picture suggested on figure 7 should be considered as a
hypothesis which is valid if the slope of the large-scale condensate gets steeper than−3
(condition of nonlocality of the small-scale turbulence). Unfortunately, it is at present
impossible to test the hypothesis of non-locality using direct numerical simulations,
because of insufficient resolution and the large required time for simulations. On the
other hand, it is possible to compute the entire spectrum by treating the small-scale
turbulence and large-scale condensate as two different fluids. Because there is no
spectral gap in this case, the large-scale component may leak into the small scales
and the low-k tail of the small-scale component may start overlapping with the large
scales. Thus, one has to implement a procedure to transfer the large-scale component
into the small-scale one and back when they cross a wavenumber kb taken to be
a boundary separating the large and small scales. As in this paper, the small-scale
component can be computed by the PIC code, whereas the pseudo-spectral method
can be used for the large-scale component. In this case, the natural choice for kb is
given by the smallest scale of the pseudo-spectral scheme. Numerical results obtained
by such a two-fluid numerical method are reported in Laval et al. (1999).

It is interesting that the k−1-spectrum is observed experimentally in near-wall
turbulence by Perry, Henbest & Chong (1986). The near-wall turbulence is, of course
not two-dimensional, but it is likely to be very non-local in that the turbulence
interaction with the large-scale mean flow dominates its dynamics. Thus, the k−1-
spectrum in this case may have a similar origin, especially considering that the
dimensional argument presented in § 5 is independent of the number of dimensions.

One remark should be made about the non-locality in the direct cascade of
enstrophy. It is known that equal intervals of the k−3 spectrum give equal contributions
to the enstrophy transfer (Kraichnan 1971). In the present paper, these contributions
have been assumed to be small compared to the enstrophy transfer via straining
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the large-scale component. Naturally, for very high wavenumbers this assumption
will fail, and the small-scale k−3-spectrum itself will start dominating the enstrophy
transfer (G. Eyink 1998, personal communication). Such a transfer is also non-local,
but in a different way from that considered in this paper. This regime was considered
by Kraichnan (1971) who showed that one should expect a logarithmic correction to
the k−3-spectrum in this case.

We thank Professor Babiano for help with numerics and useful discussions.

Appendix A. Evolution of the ellipse aspect ratio in straining and shearing
large-scale flows

We will consider two special cases of large-scale flows: an axially symmetric vortex
and a uniform strain flow. These two examples correspond to the characteristic
behaviour on the ‘islands of vorticity’ and in the ‘sea of strain’ in a general turbulent
flow (Chertkov et al. 1995).

A.1. Axially symmetric vortex

Let us solve the ray equations (2.9) and (2.10) for the case of an axisymmertic vortex
when u = U(r)eφ, where r and φ are the polar coordinates, and eφ is a unit vector
tangent to r = const. Here, the velocity profile U(r) is arbitrary, provided it is large
scale and satisfies the condition (2.2). The solution of (2.9) in this case is just a
uniform rotation,

r = const, (A 1)

φ = Ωt+ φ0, (A 2)

where Ω = U/r is the angular velocity. For the wavenumber we have

k̇r = Ωkφ − kφ∂rU, (A 3)

k̇φ = −Ωkr +
1

r
krU = 0. (A 4)

Solving these equations, we obtain

kφ = const = qφ0, (A 5)

kr = −qφ0rβt+ qr0 (A 6)

where β = r∂rΩ. Near the vortex centre ∂rΩ = 0 and kr = const. so that the
wavevector is just uniformly rotating without any change in magnitude. For large
time, rβt� 1, the initial ring k = q0 becomes an ellipse with

kmax ≈ q0|β|t, (A 7)

kmin = q2
0/kmax ≈ q0/|β|t, (A 8)

λ = kmax/kmin ≈ (βt)2. (A 9)

A.1.1. Uniform strain flow

For uniform strain flow, the large-scale velocity field is u = (Ux,Uy) with

Ux = αx, (A 10)

Uy = −αy, (A 11)
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where the x- and y-axes are chosen to be principal axes of the strain, and α = const.
In this case,

k̇x = −αkx, (A 12)

k̇y = αky. (A 13)

Solving these equations, we have

kx = q0x exp (−αt), (A 14)

ky = q0y exp (αt). (A 15)

For large time, αt� 1, we have the following ellipse parameters:

kmax ≈ q0 exp (αt), (A 16)

kmin ≈ q0 exp (−αt), (A 17)

λ ≈ exp (2αt). (A 18)
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